New perspectives in Arakelov geometry

نویسندگان

  • Caterina Consani
  • Matilde Marcolli
چکیده

In this paper we give a uni ed description of the archimedean and the totally split degenerate bers of an arithmetic surface, using operator algebras and Connes' theory of spectral triples in noncommutative geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arakelov Intersection Indices of Linear Cycles and the Geometry of Buildings and Symmetric Spaces

This paper generalizes Yu. Manin’s approach toward a geometrical interpretation of Arakelov theory at infinity to linear cycles in projective spaces. We show how to interpret certain non-Archimedean Arakelov intersection numbers of linear cycles on Pn−1 with the combinatorial geometry of the Bruhat-Tits building associated to PGL(n). This geometric setting has an Archimedean analogue, namely, t...

متن کامل

A Hirzebruch proportionality principle in Arakelov geometry

We show that a conjectural extension of a fixed point formula in Arakelov geometry implies results about a tautological subring in the arithmetic Chow ring of bases of abelian schemes. Among the results are an Arakelov version of the Hirzebruch proportionality principle and a formula for a critical power of ĉ1 of the Hodge bundle. 2000 Mathematics Subject Classification: 14G40, 58J52, 20G05, 20...

متن کامل

A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties

We give a new proof of the Jantzen sum formula for integral representations of Chevalley schemes over Spec Z. This is done by applying the fixed point formula of Lefschetz type in Arakelov geometry to generalized flag varieties. Our proof involves the computation of the equivariant Ray-Singer torsion for all equivariant bundles over complex homogeneous spaces. Furthermore, we find several expli...

متن کامل

A FAMILY OF ARITHMETIC SURFACES OF GENUS 3 Jordi

The study of a curve from the arithmetical or the Arakelov viewpoints is a hard task, since it involves a very good knowledge of its geometry (differential forms, periods), its arithmetic (locus of bad reduction, stable models) and its analysis (Green function). Classically, two families of curves have been extensively studied: Fermat curves and modular curves. The study of these curves is feas...

متن کامل

Géométrie Algébrique/algebraic Geometry Analytic Invariants in Arakelov Theory for Curves Invariants Analytiques Arakeloviens Pour Les Courbes

Arakelov theory for Riemann surfaces is based on two analytic invariants: the Green function and Faltings δ invariant. Both invariants are hard to compute and they are only known in a few cases (cf. [3],[1]). They are related by a formula of Faltings, which also involves the theta-function on the jacobian of the curve. In any case, it is an ineffective relation, because three of the four terms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004